Vinayak Sharma

PhD in CS, Arizona State University


  • Github
  • G-Scholar
  • Orcid
  • LinkedIn
  • Resume
  • Gravatar
  • Whatsapp

Publications

2025

  1. LUCI: Lightweight UI Command Interface

    Lagudu, Guna and Sharma, Vinayak and Shrivastava, Aviral

    @inproceedings{LUCI2025,
      author = {Lagudu, Guna and Sharma, Vinayak and Shrivastava, Aviral},
      title = {LUCI: Lightweight UI Command Interface},
      year = {2025},
      isbn = {9798400719219},
      publisher = {Association for Computing Machinery},
      address = {New York, NY, USA},
      url = {https://doi.org/10.1145/3735452.3735536},
      doi = {10.1145/3735452.3735536},
      booktitle = {Proceedings of the 26th ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, and Tools for Embedded Systems},
      pages = {182-191},
      numpages = {10},
      keywords = {Embedded Systems, LLM, System Automation},
      location = {Seoul, Republic of Korea},
      series = {LCTES '25}
    }
    

2024

  1. Primer on Data in Quantum Machine Learning

    Shrivastava, Aviral and Sharma, Vinayak

    @inproceedings{QuantumPrimer2024,
      author = {Shrivastava, Aviral and Sharma, Vinayak},
      booktitle = {2024 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES)},
      title = {Primer on Data in Quantum Machine Learning},
      year = {2024},
      volume = {},
      number = {},
      pages = {19-20},
      keywords = {Performance evaluation;Quantum system;Machine learning algorithms;Quantum algorithm;Embedded systems;Computer aided software engineering;Machine learning;Computer architecture;Quantum state;Machine Learning;Quantum Information;Quantum Computing},
      doi = {10.1109/CASES60062.2024.00010}
    }
    

2023

  1. @misc{sharma2023quantum,
      title = {Quantum Polar Metric Learning: Efficient Classically Learned Quantum Embeddings},
      author = {Sharma, Vinayak and Shrivastava, Aviral},
      year = {2023},
      eprint = {2312.01655},
      archiveprefix = {arXiv},
      primaryclass = {quant-ph},
      url = {https://mpslab-asu.github.io/QPMeL/},
      preprint = {true}
    }